Квадратный трехчлен Упражнения

- 0. Уравнение $x^2 + px + q$ имеет корни, равные x_1 и x_2 . Напишите уравнение, корнями которого будут числа y_1 и y_2 , равные:
 - a) x_1^3, x_2^3 б) $\frac{1}{x_1^2}, \frac{1}{x_2^2}$ в) $x_1 + \frac{1}{x_1}, x_2 + \frac{1}{x_2}$ г) $\frac{x_2}{x_1}, \frac{x_1}{x_2}$.
 - 1. Известно, что 5a + 3b + 3c = 0 при условии $a \neq 0$. Докажите, что $b^2 > 4ac$.
- 2. Старший коэффициент квадратного трехчлена f(x) равен 2. Один из 5 его корней равен 2. Найдите второй корень, если известно, что f(0) = 3.
- 3. Игорь с каждым приведённым квадратным трёхчленом делает следующее: рисует его график, ищет точки пересечения с осями координат и, если получит 3 точки, проводит через эти точки окружность. Докажите, что все такие окружности проходят через одну точку.
- 4. На параболе $y=x^2$ выбраны четыре точки $A,\,B,\,C,\,D$ так, что прямые AB и CD пересекаются на оси ординат. Найдите абсциссу точки D, если абсциссы точек $A,\,B$ и C равны $a,\,b$ и c соответственно.
- 5. Докажите, что для любых действительных чисел a и b справедливо неравенство $a^2 + ab + b^2 > 3(a + b 1)$.
- 6. График квадратичной функции $y = ax^2 + c$ пересекает оси координат в вершинах правильного треугольника. Чему равно ac?
- 7. Корни квадратного трёхчлена $f(x) = x^2 + ax + b$ равны m_1 и m_2 , а корни квадратного трёхчлена $g(x) = x^2 + px + q$ равны k_1 и k_2 . Докажите, что $f(k_1) + f(k_2) + g(m_1) + g(m_2) \ge 0$.
- 8. Алёша написал на доске 5 целых чисел коэффициенты и корни квадратного трёхчлена. Боря стёр одно из них. Остались числа 2, 3, 4, —5 в каком-то порядке. Восстановите стёртое число и докажите, что было написано именно оно.
- 9. Известно, что многочлены $ax^2 + bx + c$ и $bx^2 + cx + a$ ($a \neq 0$) имеют общий корень. Найдите его.
- 10. $a,b,c\in\mathbb{Z}$, причем $b\neq c$. Известно, что квадратные трехчлены ax^2+bx+c и $(c-b)x^2+(c-a)x+(a+b)$ имеют общий корень (не обязательно целый). Докажите, что (a+b+2c): 3.
- 11. Пусть x_1 и x_2 корни уравнения $x^2-11x+29=0$. Найдите выражение: $\frac{3}{x_1^2}+7x_1^2+6x_1x_2+\frac{3}{x_2^2}+7x_2^2$.

Задачи

1. [Физтех-2019-11 №1] Даны квадратные трёхчлены $f_1(x) = x^2 - ax + 2$,

 $f_2(x) = x^2 + 3x + b$, $f_3(x) = 3x^2 + (3 - 2a)x + 4 + b$ in $f_4(x) = 3x^2 + (6 - 2a)x + 4 + b$ in $f_4(x) = 3x^2 + (6 - 2a)x + 4 + b$ in $f_4(x) = 3x^2 + (6 - 2a)x + 4 + b$ in $f_4(x) = 3x^2 + (6 - 2a)x + 4 + b$ in $f_4(x) = 3x^2 + (6 - 2a)x + 4 + b$ in $f_4(x) = 3x^2 + (6 - 2a)x + 4 + b$ in $f_4(x) = 3x^2 + (6 - 2a)x + 4 + b$ in $f_4(x) = 3x^2 + (6 - 2a)x + 4 + b$ in $f_4(x) = 3x^2 + (6 - 2a)x + a$ a)x + 2 + 2b. Пусть разности их корней равны соответственно $A,\ B,\ C$ и D,при этом $|A| \neq |B|$. Найдите отношение $\frac{C^2-D^2}{A^2-B^2}$, значения $A,B,C,D,\ a,\ b$ не даны.

- 2. [СПбГУ-2012-11 №2] Коэффициенты квадратного уравнения $ax^2 + bx + c$ удовлетворяют условию 2a + 3b + 6c = 0. Докажите, что это уравнение имеет корень на промежутке [0; 1].
- 3. [Физтех-2018-11 № 2] Даны две линейные функции f(x) и g(x) такие, что графики y = f(x) и y = g(x) — параллельные прямые, не параллельные осям координат. Найдите наименьшее значение функции $(g(x))^2 + f(x)$, если наименьшее значение функции $(f(x))^2 + g(x)$ равно -6.

4. [Физтех-2018-10. № 3] Уравнение $x^2 + ax + 5 = 0$ имеет два различных корня x_1 и x_2 ; при этом

$$x_1^2 + \frac{250}{19x_2^3} = x_2^2 + \frac{250}{19x_1^3}$$

Найдите все возможные значения a.

5. [Физтех-2017-10. № 1] Когда к квадратному трёхчлену f(x) прибавили $3x^2$, его наименьшее значение увеличилось на 9, а когда из него вычли x^2 , его наименьшее значение уменьшилось на 9. А как изменится наименьшее значение f(x), если к нему прибавить x^2 ?

 $\sqrt{\frac{9}{5}}$ sh rothphilasy

6. [Физтех-2018-10. № 2] Даны две линейные функции f(x) и g(x) такие, что графики y = f(x) и y = g(x) — параллельные прямые, не параллельные осям координат. Известно, что график функции $y = (f(x))^2$ касается графика функции y = 11g(x). Найдите все значения A такие, что график функции $y = (g(x))^2$ касается графика функции y = Af(x).

II-=A, 0=A

7. [Физтех-2017-10. № 1] Известно, что для трёх последовательных натуральных значений аргумента квадратичная функция f(x) принимает значения 13, 13 и 35 соответственно. Найдите наименьшее возможное значение f(x).