Линейные диофантовы уравнения и КТО

1. Критерий разрешимости

Фиксированные $a, b, c \in \mathbb{Z}$, неизвестные $x, y \in \mathbb{Z}$, уравнение ax + by = c.

Это уравнение имеет решение $\Leftrightarrow c : (a, b)$.

Решение имеет вид
$$x = x_0 + \frac{b}{(a,b)} \cdot w$$
, $y = y_0 - \frac{a}{(a,b)} \cdot w$, параметр $w \in \mathbb{Z}$.

Аналогично, уравнение ax + by + ... = c имеет решение $\Leftrightarrow c : (a, b, ...)$.

2. Теорема Сильвестра

Пусть $a, b \in \mathbb{N}$, $a \perp b$. Наибольшее c, для которого уравнение ax + by = c **не имеет** решений $x, y \in \mathbb{N} \cup \{0\}$, имеет вид c = ab - a - b.

$$\square$$
 «не имеет» $ax + by = ab - a - b \Rightarrow x + 1 \vdots b, y + 1 \vdots a \Rightarrow$

$$\Rightarrow x \ge b-1, y \ge a-1 \Rightarrow ax+by \ge 2ab-a-b$$

«наибольшее» Пусть $c \ge ab - a - b + 1$.

$$\exists x \in \{0, 1, ..., b-1\}: c-ax : b. \text{ Пусть } c-ax = by, y \in \mathbb{Z}.$$

$$x \le b - 1 \Rightarrow c - ax \ge (ab - a - b + 1) - a(b - 1) = -b + 1 > -b \Rightarrow y \ge 0.$$

3. Китайская теорема об остатках

Пусть $m_1, m_2, ..., m_n$ — попарно взаимно простые натуральные числа, $b_1, b_2, ..., b_n$ — произвольные целые числа. Система сравнений

$$x \equiv b_1, \quad x \equiv b_2, \quad , \dots, \quad x \equiv b_n$$

имеет единственное по модулю $m_1 m_2 ... m_n$ решение.

 \square Существование. Пусть $M=m_1m_2...m_n,\ m_k'=M/m_k$ и $f_km_k'\equiv_{m_k}1.$

Тогда $x_0 = b_1 f_1 m_1' + b_2 f_2 m_2' + \dots + b_n f_n m_n'$ является решением.

Единственность. x_1 и x_2 — решения $\Rightarrow x_1 - x_2 : m_1, m_2, ..., m_n \Rightarrow x_1 = x_2 : m_1, m_2,$

$$\square$$
 Рассмотрим $\begin{cases} x \equiv_k a, \\ x \equiv_\ell b \end{cases}$ $(k \perp \ell).$ Тогда $ks + a = x = \ell t + b,$ т.е. $ks - \ell t = b - a.$

Это уравнение имеет решение $s = c + \ell u$ (фиксированное $c \in \mathbb{Z}$, любое $u \in \mathbb{Z}$).

Тогда $x = d + k\ell u$ (фиксированное $d \in \mathbb{Z}$), т.е. $x \equiv_{k\ell} d$.