#### МАТЕМАТИКА

#### Дополнительные главы математики

#### Шарич Владимир Златкович



#### Высшая школа экономики

Национальный исследовательский университет

Факультет математики

2018/2019



#### Общие сведения о курсе:

10 разделов

Раздел = 4 темы и 3 четверга

На занятиях теория + практика

# Цели курса:

Представление о математике как науке

Удовольствие от красивых сюжетов

Подготовка к олимпиадам



# Программа

### 1. Исследование процессов

- 1.1 зацикливание
- 1.2 инварианты
- 1.3 полуинварианты
- 1.4 алгоритмы

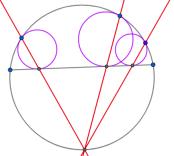
Задача Докажите, что для любого  $n \in \mathbb{N}$  существует бесконечно много чисел Фибоначчи, кратных n.

### 2. Арифметика вычетов по модулю

- 2.1 сравнения по модулю
- 2.2 нестандартные признаки делимости
- 2.3 обратимые вычеты, теорема Вильсона
- 2.4 малая теорема Ферма, теорема Эйлера

Задача Какой остаток даёт

$$2015! = 2015 \cdot 2014 \cdot ... \cdot 2 \cdot 1$$


при делении на 2017?



### 3. Преобразования плоскости

- 3.1 движения
- 3.2 гомотетия
- 3.3 инверсия относительно окружности
- 3.4 параллельная и центральная проекции

Задача Докажите, что красные прямые пересекаются на окружности.



## 4. Доказательство существования

- 4.1 конструкция
- 4.2 метод крайнего
- 4.3 принцип Дирихле
- 4.4 непрерывность

Задача На плоскости даны N синих и N красных точек общего положения. Докажите, что можно провести N непересекающихся отрезков, каждый из которых соединял бы красную точку с синей.



### 5. Задачи в целых числах

- 5.1 линейные диофантовы уравнения
- 5.2 нелинейные диофантовы уравнения
- 5.3 текстовые задачи
- 5.4 задачи с параметрами

Задача Найдите все целые x и y такие, что

$$2^x + 1 = 3^y.$$

### 6. Векторы и координаты

- 6.1 решение задач с помощью векторов
- 6.2 скалярное произведение, неравенство Коши-Буняковского-Шварца
- 6.3 векторное произведение и его свойства
- 6.4 плоскости и прямые в пространстве

Задача В тетраэдре ABCD две пары перпендикулярных скрещивающихся рёбер:  $AB\bot CD$ ,  $AC\bot BD$ . Докажите, что рёбра в третьей паре также перпендикулярны:  $AD\bot BC$ .

### 7. Экстремальные задачи

- 7.1 минимум и максимум функции
- 7.2 оценка + пример в комбинаторике
- 7.3 экстремальные задачи в геометрии
- 7.4 экстремальные задачи в теории графов

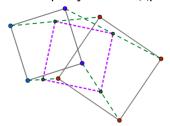
Задача Какое наибольшее значение принимает выражение

 $\sin x \sin y \sin z + \cos x \cos y \cos z$ ?

### 8. Задачи с параметрами

- 8.1 линейные задачи
- 8.2 квадратичные задачи
- 8.3 тригонометрические задачи
- 8.4 нестандартные задачи

Задача Найдите все значения m, при каждом из которых уравнение


$$2^{\frac{(x+1)^2}{x^2+1}} + m^2 - 4 = 2m \cos\left(\frac{x^2-1}{2x}\right)$$

имеет единственное решение.

#### 9. Комплексные числа

- 9.1 геометрия арифметических операций
- 9.2 формула Муавра, правильные многоугольники
- 9.3 преобразования плоскости
- 9.4 решение геометрических задач

Задача  $A_1B_1C_1D_1$  и  $A_2B_2C_2D_2$  — одинаково ориентированные квадраты на плоскости. Докажите, что середины отрезков  $A_1A_2$ ,  $B_1B_2$ ,  $C_1C_2$ ,  $D_1D_2$  также образуют квадрат.



#### 10. Комбинаторика

- 10.1 правила суммы и произведения
- 10.2 сочетания и размещения, метод шаров и перегородок
- 10.3 элементы теории вероятностей
- 10.4 рекуррентные подсчёты, числа Фибоначчи

Задача При какой наименьшей численности случайной группы людей вероятность совпадения дней рождения у двух из них больше  $\frac{1}{2}$ ?

| JANUARY              | FEBRUARY             | MARCH                | APRIL                |
|----------------------|----------------------|----------------------|----------------------|
| 1 2                  | 1 2 3 4 5 6          | 1 2 3 4 5            | 1 2                  |
| 3 4 5 6 7 8 9        | 7 8 9 10 11 12 13    | 6 7 8 9 10 11 12     | 3 4 5 6 7 8 9        |
| 10 11 12 13 14 15 16 | 14 15 16 17 18 19 20 | 13 14 15 16 17 18 19 | 10 11 12 13 14 15 16 |
| 17 18 19 20 21 22 23 | 21 22 23 24 25 26 27 | 20 21 22 23 24 25 26 | 17 18 19 20 21 22 23 |
| 24 25 26 27 28 29 30 | 28 29                | 27 28 29 30 31       | 24 25 26 27 28 29 30 |
|                      |                      |                      |                      |
| MAY                  | JUNE                 | JULY                 | AUGUST               |
| 1 2 3 4 5 6 7        | 1 2 3 4              | 1 2                  | 1 2 3 4 5 6          |
| 8 9 10 11 12 13 14   | 5 6 7 8 9 10 11      | 3 4 5 6 7 8 9        | 7 8 9 10 11 12 13    |
| 15 16 17 18 19 20 21 | 12 13 14 15 16 17 18 | 10 11 12 13 14 15 16 | 14 15 16 17 18 19 20 |
| 22 23 24 25 26 27 28 | 19 20 21 22 23 24 25 | 17 18 19 20 21 22 23 | 21 22 23 24 25 26 27 |
| 29 30 31             | 26 27 28 29 30       | 24 25 26 27 28 29 30 | 28 29 30 31          |
|                      |                      |                      |                      |
| SEPTEMBER            | OCTOBER              | NOVEMBER             | DECEMBER             |
| 1 2 3                | 1                    | 1 2 3 4 5            | 1 2 3                |
| 4 5 6 7 8 9 10       | 2 3 4 5 6 7 8        | 6 7 8 9 10 11 12     | 4 5 6 7 8 9 10       |
| 11 12 13 14 15 16 17 | 9 10 11 12 13 14 15  | 13 14 15 16 17 18 19 | 11 12 13 14 15 16 17 |
| 18 19 20 21 22 23 24 | 16 17 18 19 20 21 22 | 20 21 22 23 24 25 26 | 18 19 20 21 22 23 24 |
| 25 26 27 28 29 30    | 23 24 25 26 27 28 29 | 27 28 29 30          | 25 26 27 28 29 30 31 |

#### 10 класс

Исследование процессов Арифметика вычетов по модулю Преобразования плоскости Доказательство существования Задачи в целых числах Векторы и координаты Экстремальные задачи Задачи с параметрами В конце – углубление

11 класс

В начале – повторение Комплексные числа Комбинаторика

# Вопросы?

#### Вопросы есть у меня:

- 1. Напишите наименьшее натуральное число, состоящее из всех цифр от 0 до 9 и кратное 25.
- 2. Какой может быть площадь четырёхугольника, диагонали которого имеют длины 5 и 6?
- 3. Правильную монету подкидывают 5 раз. Какова вероятность того, что орёл выпал ровно трижды?