Малая теорема Ферма, теорема Эйлера

Малая теорема Ферма.

!!

Если $p \in \mathbb{P}$, $a \in \mathbb{Z}$, $a \not \mid p$, то $a^{p-1} \equiv_p 1$.

- 1. (a) Какой остаток даёт 3²⁰¹⁷ при делении на 13?
 - (b) Какой остаток даёт 5^{1001} при делении на 11?
 - (c) Какой остаток даёт 11^{11} при делении на 12?
 - (d) Какой остаток даёт 6^{500} при делении на 72?
- 2. Целые числа a,b,c,d,e,f таковы, что $a^{12}+b^{12}+c^{12}+d^{12}+e^{12}+f^{12}$: 13 . Докажите, что abcdef:13⁶.
- 3. (а) Докажите, что для любых $p \in \mathbb{P}$ и $a \in \mathbb{Z}$ справедливо $a^p \equiv_p a$.
 - (b) Даны $q, r \in \mathbb{P}, q \neq r$. Докажите, что $q^r + r^q \equiv_{qr} q + r$.
 - (c) Сумма трёх чисел a, b и c делится на 30. Докажите, что $a^5 + b^5 + c^5$ также делится на 30.
- 4. Пусть $p \in \mathbb{P}$. Докажите, что $(b+c)^p \equiv_p b^p + c^p$ для любых $b, c \in \mathbb{Z}$.
- 5. (а) Даны $b,k,\ell\in\mathbb{N}$, причём b>1. Докажите, что $(b^k-1,b^\ell-1)=b^{(k,\ell)}-1$.
 - (b) Дано простое p>3. Положим $n=\frac{2^{2p}-1}{3}$. Докажите, что 2^n-2 : n .
 - ! Φ ункция Эйлера $\varphi(n)$ равна количеству натуральных чисел, не превосходящих n и взаимно простых с ним.
- 6. Пусть $n=p_1^{\gamma_1}\cdot p_2^{\gamma_2}\cdot ...\cdot p_k^{\gamma_k}$ разложение числа n на простые множители. Докажите, что $\varphi(n)=n\left(1-\frac{1}{p_1}\right)\left(1-\frac{1}{p_2}\right)...\left(1-\frac{1}{p_k}\right)$.

Теорема Эйлера.

!! Если $n \in \mathbb{N}, a \in \mathbb{Z}, a \perp n$, то $a^{\varphi(n)} \equiv_n 1$.

(Обобщение малой теоремы Ферма на составные числа.)

- 7. (a) Найдите остаток от деления 7^{120} на 143.
 - (b) Найдите три последние цифры числа 17¹⁰⁰⁰⁰⁰¹.
- 8. Докажите, что для любого натурального n, взаимно простого с 10, найдётся натуральное k такое, что nk=11...1.

Малая теорема Ферма, теорема Эйлера

Малая теорема Ферма.

!!

Если $p \in \mathbb{P}$, $a \in \mathbb{Z}$, $a \not \mid p$, то $a^{p-1} \equiv_p 1$.

- 1. (a) Какой остаток даёт 3²⁰¹⁷ при делении на 13?
 - (b) Какой остаток даёт 5^{1001} при делении на 11?
 - (c) Какой остаток даёт 11^{11} при делении на 12?
 - (d) Какой остаток даёт 6^{500} при делении на 72?
- 2. Целые числа a,b,c,d,e,f таковы, что $a^{12}+b^{12}+c^{12}+d^{12}+e^{12}+f^{12}$: 13 . Докажите, что abcdef:13⁶.
- 3. (а) Докажите, что для любых $p \in \mathbb{P}$ и $a \in \mathbb{Z}$ справедливо $a^p \equiv_p a$.
 - (b) Даны $q, r \in \mathbb{P}, q \neq r$. Докажите, что $q^r + r^q \equiv_{qr} q + r$.
 - (c) Сумма трёх чисел a, b и c делится на 30. Докажите, что $a^5 + b^5 + c^5$ также делится на 30.
- 4. Пусть $p \in \mathbb{P}$. Докажите, что $(b+c)^p \equiv_p b^p + c^p$ для любых $b, c \in \mathbb{Z}$.
- 5. (а) Даны $b,k,\ell\in\mathbb{N}$, причём b>1. Докажите, что $(b^k-1,b^\ell-1)=b^{(k,\ell)}-1$.
 - (b) Дано простое p>3. Положим $n=\frac{2^{2p}-1}{3}$. Докажите, что 2^n-2 : n .
 - ! Φ ункция Эйлера $\varphi(n)$ равна количеству натуральных чисел, не превосходящих n и взаимно простых с ним.
- 6. Пусть $n=p_1^{\gamma_1}\cdot p_2^{\gamma_2}\cdot ...\cdot p_k^{\gamma_k}$ разложение числа n на простые множители. Докажите, что $\varphi(n)=n\left(1-\frac{1}{p_1}\right)\left(1-\frac{1}{p_2}\right)...\left(1-\frac{1}{p_k}\right)$.

Теорема Эйлера.

!! Если $n \in \mathbb{N}, a \in \mathbb{Z}, a \perp n$, то $a^{\varphi(n)} \equiv_n 1$.

(Обобщение малой теоремы Ферма на составные числа.)

- 7. (a) Найдите остаток от деления 7^{120} на 143.
 - (b) Найдите три последние цифры числа 17¹⁰⁰⁰⁰⁰¹.
- 8. Докажите, что для любого натурального n, взаимно простого с 10, найдётся натуральное k такое, что nk=11...1.