Критерий Карно

- 1. Докажите, что $CD \perp AB$ тогда и только тогда, когда $AC^2 BC^2 = AD^2 BD^2$.
- 2. Дано число $d \in \mathbb{R}$. Сколько существует точек X на прямой AB, таких что $AX^2 BX^2 = d$?
- 3. Докажите, что множество точек с одинаковой степенью относительно двух неконцентрических окружностей это прямая, перпендикулярная прямой центров (это так называемая радикальная ось двух окружностей).
- 4. **Критерий Карно.** Пусть даны три неколлинеарные точки A, B, C и три произвольные точки A', B', C'. Перпендикуляр из A' на BC обозначим ℓ_a , аналогично определим ℓ_b и ℓ_c . Докажите, что

$$\ell_a \cap \ell_b \cap \ell_c \neq \emptyset$$
 \Leftrightarrow $A'B^2 + B'C^2 + C'A^2 = A'C^2 + B'A^2 + C'B^2.$

- 5. Применение критерия Карно в известных ситуациях.
 - (а) Докажите, что высоты треугольника пересекаются в одной точке.
 - (b) Три окружности попарно пересекаются. Докажите, что общие хорды (или их продолжения) пар этих окружностей пересекаются в одной точке.
- 6. Пусть C_1, C_2, \ldots, C_n точки плоскости, возможно совпадающие; $d \in \mathbb{R}$. Докажите, что ГМТ X:

$$k_1C_1X^2 + k_2C_2X^2 + \dots = d$$

- ullet если $\sum k_i = 0$, то это либо вся плоскость, либо прямая, либо \emptyset ;
- ullet если $\sum k_i \neq 0$, то это либо окружность, либо точка, либо пустое множество.

Приведите примеры, показывающие, что все случаи в задаче 6 возможны.

- 7. Окружность Аполлония. Докажите, что ГМТ X: AX: BX = k окружность $(k \neq 1)$ либо прямая (k = 1).
- 8. Дан треугольник ΔABC и прямая ℓ , не проходящая через вершины ΔABC . Пусть A', B', C' основания перпендикуляров на ℓ из A, B, C, соответственно. Пусть a', b', c' перпендикуляры из A' на BC, из B' на AC, из C' на AB. Докажите, что прямые a', b', c' пересекаются в одной точке.
- 9. Точки M, N таковы, что AM: BM: CM = AN: BN: CN. Докажите, что прямая MN проходит через центр описанной окружности треугольника ABC.
- 10. Окружности $\omega_1, \omega_2, \omega_3, \omega_4$ касаются ω_5 внешним образом; при этом ω_1 и ω_3 касаются ω_2 и ω_4 также внешним образом. Докажите, что точка пересечения общих внутренних касательных $\ell_{\omega_2\omega_5}$ и $\ell_{\omega_4\omega_5}$ лежит на прямой центров ω_1 и ω_3 .