Теоремы Мирского и Дилуорса

Определение. Отношение ightarrow на множестве $\mathcal S$ называется

- peфлексивным, если $\forall b \in \mathcal{S}$ справедливо $b \to b$;
- антисимметричным, если условия $a \to c$ и $c \to a$ одновременно могут выполняться только при a = c;
- транзитивным, если $\forall a, b, c \in \mathcal{S}$ из $a \to b$ и $b \to c$ следует $a \to c$;
- *отношением порядка*, если оно одновременно рефлексивно, антисимметрично и транзитивно; в этом случае пара (S, \to) называется частично упорядоченным множеством (ЧУМ).

Элементы a и c называются cpaehumыmu, если $\begin{bmatrix} a \to c \\ c \to a \end{bmatrix}$

Цепью называется набор попарно сравнимых элементов.

Антицепью называется набор попарно несравнимых элементов.

Mаксимальным называется элемент $a \in \mathcal{S}$, такой что $(\forall c \in \mathcal{S})a \not\rightarrow c$.

Mинимальным называется элемент $c \in \mathcal{S}$, такой что $(\forall a \in \mathcal{S})a \not\to c$.

- (а) В некотором ЧУМе есть (анти)цепь из d элементов. Докажите, что в нём есть как минимум 2^d-1 (анти)цепей.
- (b) Докажите, что в одной цепи может быть не более одного минимального и не более одного максимального элемента, причём в максимальной (по включению) конечной цепи есть и такой, и такой.
- (с) Докажите, что набор всех максимальных (минимальных) элементов образует антицепь.

Теорема Мирского: наименьшее количество антицепей, покрывающих конечное

ЧУМ, равно наибольшей длине цепи в этом ЧУМе.

Теорема Дилуорса: наименьшее количество цепей, покрывающих конечное ЧУМ,

равно наибольшему размеру антицепи в этом ЧУМе.

- 1. Дана последовательность из n различных чисел. Докажите, что
 - (a) если $n > k^2$, то есть монотонная подпоследовательность из k+1 чисел;
 - (b) если $n < k^2$, то монотонной последовательности длины k+1 может не быть.
- 2. На прямой даны ml+1 отрезков. Докажите, что можно либо выбрать m+1 отрезков, имеющих общую точку, либо выбрать l+1 отрезков, никакие два из которых не пересекаются.
- 3. Дано несколько различных натуральных чисел. Известно, что среди любых t+1 из них можно выбрать два числа, одно из которых делится на другое. Докажите, что числа можно покрасить в t цветов так, чтобы для любых двух чисел одного цвета одно делилось на другое.

Теоремы Мирского и Дилуорса

Определение. Отношение ightarrow на множестве $\mathcal S$ называется

- peфлексивным, если $\forall b \in \mathcal{S}$ справедливо $b \to b$;
- антисимметричным, если условия $a \to c$ и $c \to a$ одновременно могут выполняться только при a = c;
- транзитивным, если $\forall a, b, c \in \mathcal{S}$ из $a \to b$ и $b \to c$ следует $a \to c$;
- *отношением порядка*, если оно одновременно рефлексивно, антисимметрично и транзитивно; в этом случае пара (S, \to) называется частично упорядоченным множеством (ЧУМ).

Элементы a и c называются cpaehumыmu, если $\begin{bmatrix} a \to c \\ c \to a \end{bmatrix}$

Цепью называется набор попарно сравнимых элементов.

Антицепью называется набор попарно несравнимых элементов.

Mаксимальным называется элемент $a \in \mathcal{S}$, такой что $(\forall c \in \mathcal{S})a \not\rightarrow c$.

Mинимальным называется элемент $c \in \mathcal{S}$, такой что $(\forall a \in \mathcal{S})a \not\to c$.

- (а) В некотором ЧУМе есть (анти)цепь из d элементов. Докажите, что в нём есть как минимум 2^d-1 (анти)цепей.
- (b) Докажите, что в одной цепи может быть не более одного минимального и не более одного максимального элемента, причём в максимальной (по включению) конечной цепи есть и такой, и такой.
- (с) Докажите, что набор всех максимальных (минимальных) элементов образует антицепь.

Теорема Мирского: наименьшее количество антицепей, покрывающих конечное

ЧУМ, равно наибольшей длине цепи в этом ЧУМе.

Теорема Дилуорса: наименьшее количество цепей, покрывающих конечное ЧУМ,

равно наибольшему размеру антицепи в этом ЧУМе.

- 1. Дана последовательность из n различных чисел. Докажите, что
 - (a) если $n > k^2$, то есть монотонная подпоследовательность из k+1 чисел;
 - (b) если $n < k^2$, то монотонной последовательности длины k+1 может не быть.
- 2. На прямой даны ml+1 отрезков. Докажите, что можно либо выбрать m+1 отрезков, имеющих общую точку, либо выбрать l+1 отрезков, никакие два из которых не пересекаются.
- 3. Дано несколько различных натуральных чисел. Известно, что среди любых t+1 из них можно выбрать два числа, одно из которых делится на другое. Докажите, что числа можно покрасить в t цветов так, чтобы для любых двух чисел одного цвета одно делилось на другое.