Π огика — 2

 \forall — κ вантор всеобщности, означает «для каждого», «для всякого», «для любого», либо просто «каждый», «всякий», «любой», ...

 $\exists - \kappa вантор \ cyществования$, означает «существует», «найдется», ...

- 1. Не является общепринятым, но используется квантор $\exists !$ «существует единственный», «найдется ровно один»... Запишите его (точнее, предложение $(\exists ! x) \varphi(x)$) с помощью стандартных кванторов \exists и \forall .
 - 2. Запишите с помощью кванторов и логических операций утверждения:
- (a) «Между любыми двумя рациональными числами найдется еще хотя бы одно рациональное число»;
- (б) «Некоторые треугольники прямоугльные, некоторые равносторонние, но также есть те, которые не относятся ни к одному из этих типов»;
 - (в) «Каждое четное число равно сумме двух простых чисел».
 - 3. Верны ли следствия (докажите либо приведите контрпример):
 - (a) $(\forall x)\varphi(x) \Rightarrow (\exists x)\varphi(x)$,
- (6) $(\exists x)\varphi(x) \Rightarrow (\forall x)\varphi(x)$?
- **4.** Равносильны ли утверждения $(\forall x)(\exists y)\varphi(x,y)$ и $(\exists y)(\forall x)\varphi(x,y)$? Если да докажите, если нет приведите контрпример.
- **5.** Однажды на лестнице была найдена странная тетрадь. В ней было написано 100 следующих утверждений:

«В этой тетради ровно 1 неверное утверждение.»

«В этой тетради ровно 2 неверных утверждения.»

.

«В этой тетради ровно 100 неверных утверждений.» Сколько среди этих утверждений верных?

- **6.** Объясните: **(a)** $\neg(\exists x)\varphi(x) \Leftrightarrow (\forall x)\neg\varphi(x);$ **(б)** $\neg(\forall x)\varphi(x) \Leftrightarrow (\exists x)\neg\varphi(x).$
- 7. Пусть $\neg \varphi_i(x) = \psi_i(x)$ (i = 1, 2). Постройте отрицания следующих предложений, не содержащие символа \neg :
 - (a) $(\forall x)(\varphi_1(x) \Rightarrow \varphi_2(x));$ (6) $(\exists x)(\varphi_1(x) \Rightarrow \varphi_2(x)).$
- 8. Запишите следующие утверждения с помощью кванторов. Затем запишите его отрицание по-русски и по-математически.
- (a) На турнире каждый участник каждой команды в каждом туре решил по крайней мере одну задачу.
- (б) В каждой команде был хотя бы один участник, решивший в каком-нибудь туре не менее 3 задач.
 - **9.** Постройте отрицания следующих предложений, не содержащие символа \neg :
 - (a) $(A \vee \neg B)\&((\neg C \vee B) \vee \neg (C\& \neg B))\&(\neg A \vee D);$
 - (6) $(\forall x \in \mathbb{N})(\exists y \in \mathbb{Z})((y : x) \Rightarrow (\exists z \in \mathbb{Q})((z = x/y)\&(\exists n \in \mathbb{N})(nz \in \mathbb{Z}))).$

Π огика — 2

 \forall — κ вантор всеобщности, означает «для каждого», «для всякого», «для любого», либо просто «каждый», «всякий», «любой», ...

 $\exists - \kappa вантор \ cyществования$, означает «существует», «найдется», ...

- 1. Не является общепринятым, но используется квантор $\exists !$ «существует единственный», «найдется ровно один»... Запишите его (точнее, предложение $(\exists ! x) \varphi(x)$) с помощью стандартных кванторов \exists и \forall .
 - 2. Запишите с помощью кванторов и логических операций утверждения:
- (a) «Между любыми двумя рациональными числами найдется еще хотя бы одно рациональное число»;
- (б) «Некоторые треугольники прямоугльные, некоторые равносторонние, но также есть те, которые не относятся ни к одному из этих типов»;
 - (в) «Каждое четное число равно сумме двух простых чисел».
 - 3. Верны ли следствия (докажите либо приведите контрпример):
 - (a) $(\forall x)\varphi(x) \Rightarrow (\exists x)\varphi(x)$,
- (6) $(\exists x)\varphi(x) \Rightarrow (\forall x)\varphi(x)$?
- **4.** Равносильны ли утверждения $(\forall x)(\exists y)\varphi(x,y)$ и $(\exists y)(\forall x)\varphi(x,y)$? Если да докажите, если нет приведите контрпример.
- **5.** Однажды на лестнице была найдена странная тетрадь. В ней было написано 100 следующих утверждений:

«В этой тетради ровно 1 неверное утверждение.»

«В этой тетради ровно 2 неверных утверждения.»

.

«В этой тетради ровно 100 неверных утверждений.» Сколько среди этих утверждений верных?

- **6.** Объясните: **(a)** $\neg(\exists x)\varphi(x) \Leftrightarrow (\forall x)\neg\varphi(x);$ **(б)** $\neg(\forall x)\varphi(x) \Leftrightarrow (\exists x)\neg\varphi(x).$
- 7. Пусть $\neg \varphi_i(x) = \psi_i(x)$ (i = 1, 2). Постройте отрицания следующих предложений, не содержащие символа \neg :
 - (a) $(\forall x)(\varphi_1(x) \Rightarrow \varphi_2(x));$ (6) $(\exists x)(\varphi_1(x) \Rightarrow \varphi_2(x)).$
- 8. Запишите следующие утверждения с помощью кванторов. Затем запишите его отрицание по-русски и по-математически.
- (a) На турнире каждый участник каждой команды в каждом туре решил по крайней мере одну задачу.
- (б) В каждой команде был хотя бы один участник, решивший в каком-нибудь туре не менее 3 задач.
 - **9.** Постройте отрицания следующих предложений, не содержащие символа \neg :
 - (a) $(A \vee \neg B)\&((\neg C \vee B) \vee \neg (C\& \neg B))\&(\neg A \vee D);$
 - (6) $(\forall x \in \mathbb{N})(\exists y \in \mathbb{Z})((y : x) \Rightarrow (\exists z \in \mathbb{Q})((z = x/y)\&(\exists n \in \mathbb{N})(nz \in \mathbb{Z}))).$