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(Each problem is worth 7 points.)

1. Points K, L, M , N are respectively the midpoints of sides AB, BC, CD, DA in a convex
quadrilateral ABCD. Line KM meets diagonals AC and BD at points P and Q, respectively. Line
LN meets diagonals AC and BD at points R and S, respectively.

Prove that if AP · PC = BQ · QD then AR · RC = BS · SD.

Solution. First we prove that
AP

PC
=

BQ

QD
in an arbitrary quadrilateral ABCD. Since the points

K and M are the midpoints of AB and CD, we have d(A, KM) = d(B, KM) and d(C, KM) =
d(D, KM) (here, d(X, Y Z) denotes the distance between point X and line Y Z). Hence we have
AP

PC
=

d(A, KM)

d(C, KM)
=

d(B, KM)

d(D, KM)
=

BQ

QD
.

By analogous reasons, we get
AR

RC
=

DS

SB
.
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Now, if AP · PC = BQ · QD, then AP 2 = (AP · PC) ·
AP

PC
= (BQ · QD) ·

BQ

QD
= BQ2

and analogously PC2 = DQ2. Hence AC = AP + PC = BQ + QD = BD. Points R and S

divide congruent diagonals AC and DB in the same ratio, hence AR = DS, RC = SB and
AR · RC = BS · SD.

2. A polynomial P (x) with integer coefficients is called good if it can be represented as a sum of
cubes of several polynomials (in variable x) with integer coefficients. For example, the polynomials
x3 − 1 and 9x3 − 3x2 + 3x + 7 = (x − 1)3 + (2x)3 + 23 are good.

a) Is the polynomial P (x) = 3x + 3x7 good?
b) Is the polynomial P (x) = 3x + 3x7 + 3x2008 good?
Justify your answers.
Answer. a) Yes. b) No.
Solution. a) We present one of many possible examples. Note that 3x7 + 3x5 = (x3 + x)3 +

(−x3)3 + (−x)3, −3x5 + 3x4 = (x2 − x)3 + (−x2)3 + x3, −3x4 + 3x2 = (x2 − 1)3 + (−x2)3 + 13,
−3x2 +3x = (x− 1)3 +(−x)3 +13. Hence, we get 3x+3x7 = (3x7 +3x5)+ (−3x5 +3x4)+ (−3x4 +
3x2)+(−3x2 +3x) = (x3 +x)3 +(x2 −x)3 +(x2 −1)3 +(x−1)3 +(−x3)3 +2(−x2)3 +(−x)3 +2 ·13.

b) Lemma. Let p(x) = a0 + a1x + · · · + anxn be the polynomial with integer coefficients, and
let p(x)3 = b0 + b1x + · · ·+ b3nx3n. Then the number (b1 + b2) + (b4 + b5) + · · ·+ (b3n−2 + b3n−1) is
even.

Proof. Consider the sum B = (b1 + b2) + (b4 + b5) + · · · + (b3n−2 + b3n−1). Note that

p(x)3 =
∑

i

a3

i x
3i + 3

∑

i6=j

a2

i ajx
2i+j + 6

∑

i6=j
i6=k

j 6=k

aiajakx
i+j+k.



The contribution of the first summand into B is 0, and the contribution of the third summand is
even. So, it is sufficient to prove that the contribution of the second summand is even.

Note that 3 | i + 2j if and only if 3 | 2i + j, since both conditions are equivalent to 3 | i − j.
Hence, the contribution of the second summand into B is

∑

36 | i−j

a2

i aj =
∑

i<j

36 | i−j

(a2

i aj + aia
2

j ).

Each term in this sum is even, so the whole sum is even too, QED. �

Suppose that the polynomial c0 + · · ·+ cmxm is good. Then by Lemma the sum (c1 + c2)+ (c4 +
c5)+ · · ·+(c3n−2 + c3n−1) is even. Since the corresponding sum for the polynomial 3x+3x7 +3x2008

is odd, this polynomial cannot be represented in the desired form.
Comment. Suppose that the polynomial b0 + · · · + bnxn is good. Then it is almost obvious

that each coefficient of the form b3i+1 or b3i+2 is divisible by 3. Also, from Lemma, we have that
b1 + b2 + b4 + b5 + . . . is even.

One can show that each polynomial with integer coefficients satisfying these two conditions is
good.

3. Let A = {(a1, . . . , a8) | ai ∈ N, 1 ≤ ai ≤ i + 1 for each i = 1, . . . , 8}. A subset X ⊂ A is
called sparse if for each two distinct sequences (a1, . . . , a8), (b1, . . . , b8) ∈ X, there exist at least
three indices i such that ai 6= bi.

Find the maximal possible number of elements in a sparse subset of set A.
Answer. 7! = 5040.
Solution. First, we show that a sparse subset X ⊂ A cannot contain more than 7! elements.

For any (a1, . . . , a8) ∈ X, consider its subsequence (a1, . . . , a6). If for two distinct elements
(a1, . . . , a8), (b1, . . . , b8) ∈ X their subsequences are identical, then they can differ only in 7th
and 8th digits; it is impossible by the definition. Hence, for all elements of X, their subsequences
are distinct; on the other hand, the number of possible subsequences is 2 · 3 · · · · · 7 = 7!, hence
|X| ≤ 7!.

Now, we will present an example of sparse subset consisting of 7! elements. Let X consist
of all sequences of the form (a1, . . . , a8), where (i) 1 ≤ ai ≤ i + 1 for each i = 1, . . . , 6; (ii)
1 ≤ a7, a8 ≤ 7; and (iii) a7 ≡

∑
6

i=1
ai (mod 7), a8 ≡

∑
6

i=1
iai (mod 7). Obviously, there is exactly

one such sequence for each (a1, . . . , a6), hence |X| = 7!. We will prove that this subset is sparse.
Consider two distinct sequences (a1, . . . , a8), (b1, . . . , b8) ∈ X. We claim that they differ in at

least 3 digits. Note that (a1, . . . , a6) 6= (b1, . . . , b6). If these subsequences differ in at least 3 digits,
then the claim is trivial. If they differ in exactly one digit, then

∑
6

i=1
ai 6≡

∑
6

i=1
bi (mod 7) and∑

6

i=1
iai 6≡

∑
6

i=1
ibi (mod 7), hence a7 6= b7, a8 6= b8, and the sequences (a1, . . . , a8), (b1, . . . , b8)

differ in 3 digits.
The only case left is when the subsequences (a1, . . . , a6) and (b1, . . . , b6) differ in exactly two

digits, say ai 6= bi and aj 6= bj . Then we need to show that a7 6= b7 or a8 6= b8. Assume the contrary.
Then ai + aj = bi + bj and iai + jaj = ibi + jbj . It follows that (i− j)ai = (iai + jaj)− j(ai + aj) =
(ibi + jbj) − j(bi + bj) = (i − j)bi, and thus ai = bi which is impossible. This contradiction finishes
the proof.


